Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:
общая лексика
векторная графика
графика, в которой изображение строится из точек, отрезков прямых линий, многоугольников и текста, а также групп таких объектов. Позволяет легко изменять масштаб изображения и любой элемент рисунка, так как каждая часть хранится как независимый объект. Используется в САПР при построении трёхмерных моделей
общая лексика
относительный вектор
в КГА - вектор, конечные точки которого заданы в относительных координатах
математика
вектор относительного положения
антоним
общая лексика
тривектор
Vector graphics is a form of computer graphics in which visual images are created directly from geometric shapes defined on a Cartesian plane, such as points, lines, curves and polygons. The associated mechanisms may include vector display and printing hardware, vector data models and file formats, as well as the software based on these data models (especially graphic design software, computer-aided design, and geographic information systems). Vector graphics is an alternative to raster or bitmap graphics, with each having advantages and disadvantages in specific situations.
While vector hardware has largely disappeared in favor of raster-based monitors and printers, vector data and software continues to be widely used, especially when a high degree of geometric precision is required, and when complex information can be decomposed into simple geometric primitives. Thus, it is the preferred model for domains such as engineering, architecture, surveying, 3D rendering, and typography, but is entirely inappropriate for applications such as photography and remote sensing, where raster is more effective and efficient. Some application domains, such as geographic information systems (GIS) and graphic design, use both vector and raster graphics at times, depending on purpose.
Vector graphics are based on the mathematics of analytic or coordinate geometry, and is not related to other mathematical uses of the term vector. This can lead to some confusion in disciplines in which both meanings are used.